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Capon’s maximum likelihood (ML) method has been used with some success in matched field
processing for source range and depth estimation. One reason for the interest in the ML is that
it is data adaptive; that is, it adapts to the actual noise field present rather than requiring an

a priori estimate of the noise component for prewhitening. When modal noise is present the
ML can become sensitive to any deviations from the unperturbed case (i.e., from the model) as
would be introduced by phase errors or model parameter errors. Using a dimensionality-
reduction procedure a more stable data adaptive method, the “‘reduced” ML (RML), is
obtained. The RML is compared here with the ML on simulated data from a 21-sensor array
in a Pekeris waveguide supporting eight normal modes. Under modal noise conditions the
RML provides a significant improvement over ML when phase errors occur. Although the
deviation from the model conside~~d here is that caused by phase errors, the nature of the

perturbation is not important sii
perturbation.

PACS numbers: 43.30.Wi, 43.30.Bp, 43.60.Gk

INTRODUCTION

A number of recent articles have considered the topic of
matched field processing, in which the plane wave steering
vector used in bearing estimation is replaced by a more com-
plicated vector that models what appears at the array when
there is a source at a particular range and depth in a wave-
guide.'”> Most published work to date deals with a range-
independent propagation model and employs a normal
mode representation of the pressure field. When a conven-
tional matched filter approach to range-depth estimation is
taken, the resulting ambiguity surface often contains several
false peaks. To obtain smoother surfaces one can use various
“mode space” beamforming methods™*; recently, the use of
Capon's maximum likelihood (ML) method®” has also been
considered.™"

It has been shown for the plane waves case® that Capon’s
ML can become quite sensitive to deviations from the unper-
turbed model case in the presence of a correlated noise field,
such as spherical isotropic noise with an oversampled array.
For the more complicated case of normal mode propagation
in a waveguide, the ML again exhibits sensitivity to pertur-
bations in the data, particularly in the presence of modal
noise. “'Sector-focused stability”” (SFS) was introduced in
Ref. 8§ to stabilize the ML in the plane wave case. The SFS
involves the use of a square matrix whose size can be consid-
erably less than the number of sensors, and therefore reduces
computation cost and numerical errors while improving sta-
bility. When the philosophy behind SFS is applied to the case
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‘he sensitivity of ML is not to any special type of

of normal mode propagation in a waveguide we obtain the
“reduced” ML (RML).

To understand why the ML is unstable in the cases con-
sidered we examine the eigenvector/eigenvalue decomposi-
tion of the cross spectral matrix obtained from the data and
expand the ML estimator as the reciprocal of a sum of terms,
one for each eigenvector. Most of the terms in the denomina-
tor of the ML estimator will be zero at the correct range and
depth, leading to a large peak in the ML estimator. When
there are no phase errors, several terms in the sum vanish
identically across the ambiguity surface. When phase errors
are present these terms are slightly bigger than zero every-
where and the value of the denominator at the true range and
depth increases, leading to a drop in peak height. By remov-
ing the offending small, but positive, terms one can restore
the peak and stabilize the ML estimator; when so modified
the estimator becomes the RML. It is not necessary to calcu-
late each eigenvector and each term separately; a dimension-
ality-reduction procedure accomplishes this and avoids the
inversion of the full-sized matrix as well.

The paper is organized as follows: Sec. I formulates the
problem in mathematical language, presenting the normal
mode model for the vector of pressure field samples, intro-
ducing the theoretical cross spectral matrix to be used
throughout, and touching briefly on two linear estimators,
the conventional matched filter method (CONV) and the
mode space version of the conventional estimator, called
here the modified conventional method (MCONYV). In Sec.
1T we present Capon’s ML method, discuss proper normali-
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zation procedures, introduce the eigenvector/eigenvalue de-
composition. and consider the source of the instability. In
Sec. 111 we develop the RML and present alternate methods
for its calculation. Section IV contains a discusion of our
simulations and results. Section V contains comments and
conclusions. We include three appendices. The first extends
our discussion of the sensitivity problem to local normal
mode models for the range-dependent case, and the second is
concerned with similar sensitivity in the use of the parabolic
approximation. The third appendix contains a mathematical
derivation relevant to the normalization of the ML estima-
tor.

. FORMULATION AND BACKGRQUND

We consider a vertical array of .V sensors in an acoustic
waveguide supporting M <.V discrete propagating modes.
We shall be concerned here with the case studied by Buck-
ingham,” the so-called “low-loss™ situation, in which the
main contribution to the ambient noise field is discrete mod-
al propagation over long distances of acoustic energy due to
independent, randomly distributed, surface sources (see
also Kuperman and Ingenito'’). For the case we consider
here the single-snapshot, narrow-band, data vector x (/N by
1) has the algebraic form

x=a,Us+ Uy +7. (n
Here, U is the N by M matrix whose (n,m)th entry is
U,. =U,(z,), which is the evaluation, at the depth z, of

the nth sensor, of the mth mode amplitude function (see
Kuperman and Ingenito,'” p. 1990). The entries of s and
(random vector) vy represent the excitation of the various
mode amplitude functions by the signal and the aggregate
noise sources, respectively. Also, g, is a complex Gaussian
random amplitude and % is a random white (nonmodal)
noise vector.

For the case of range-independent sound speed and den-
sity, and assuming cylindrical symmetry, the pressure field
at depth z due to a single source at depth z, and range r is
given by

M
plrz.z) =% U, (2)s,(nz), (2)
m -1

where the U, (z) are the samples, at the sensor depth z, of
the mth modal eigenfunction that arises as a solution to the
depth variable Sturm-Liouville boundary value problem,"
and the s,, (r.z, ) are the modal amplitudes given by

sonz))y = U, (z,)explik, ,r)2m/k, ). (3)

Thematrix U hasentries U, ,, = U, (z,), wherez,,....z, are
the depths of the N sensors and the vector s has the entries
5. (rz, ). Here, k . is the eigenvalue associated with the mth
mode. The noise vector Uy represents modal noise created
by the excitation of the modal structure by distributed inde-
pendent sources of ambient acoustic energy, such as wave
action on the surface and/or many range-separated surface
ships (see Kuperman and Ingenito,'” p. 1990).

When the sound speed or the density is range depen-
dent, one can modify the normal-mode analysis to obtain a
thenry based on local normal-mode structure,''-'?

m

3

- or use a
arabolic approximation.'’ In either case the model given by
p PP g
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Eq. (1) applies. We consider these two approaches to the
range-dependent case in Appendices A and B.

For x given by Eq. (1), the cross-spectral matrix
(CSM) is R = (xx'"), with /{ denotingconjugate transposi-
tionand ( ) time averaging; R is the average, over the avail-
able snapshots, of the dyad matrices xx”/, and is given (ap-
proximately) by

R =var(a,)Us,s/U" + UQU" + p°I , (4)

where Q is the CSM associated with the modal noise field
(i.e., @ = (yy")) and p’ is the white noise power. The ma-
trix ¢ may or may not be a diagona! matrix. This depends on
the geometric distribution of random sources comprising the
ambient noise field, and does not follow solely from the inde-
pendence of each of these random sources.”'* The matrix Q
is diagonal in the Kuperman-Ingenito development (Ref.
10, p. 1991) because of the assumption made in their work
that the spatial coherence of the noise depends only on sepa-
ration. The matrix UQU * plays the same role as K, in Bag-
geroer et al.-

We shall adopt the following model for the CSM R:

R =pBUss/U" + ooUU" + p'1. (5)
This represents a single source s,, a correlated (modal) noise
component UQU "'(Q = o°I, and a white noise component
p°1. More general models, which include a second (interfer-
ing) source, have also been considered,” but Eq. (5) will be
sufficient for our purposes. It is a relatively high level of the
o~ UU " term that will be of importance here. That @ be diag-
onal is not crucial to our analysis; only that @ have full rank
M.

The first step in any matched-field approach to estimat-
ing s, is to construct, for each potential source vector
s = 8(r,z) (where r and z are range and depth), the vector
p(r,z) = Us(r,z) that the array would have received. This
can be done through the use of complex computer models of
the propagation, such as parabolic approximation rou-
tines,'? or by employing the matrix U directly if it can be
obtained from a (local) normal-mode model.'” The conven-
tional estimator is essentially the matched filter:

CONV(r,z) =p(rz)"Rp(rz), (6)

and the plot of CONY (r,z) over ranges and depths of inter-
est is referred to as the ambiguity surface. A detailed discus-
sion of the conventional approach to matched field process-
ing is given in Ref. 2. An alternative method involving, for

the normal-mode case, the passage to “‘mode space’** is the
following modified conventional method:
MCONV(r,2)

=s(rn)"(U"U) " "U"RUUMU) " 's(r2) . €]

It can be shown that MCONYV is the optimal linear processor
for minimizing sidelobe structure if the distribution of po-
tential sources resembles a noise component of the form
o?UU Y. Equivalently, MCONYV is the optimal linear proce-
dure to maximize array gain against noise having the form
auu.

As with the plane wave case, when the noise is not white
the CONYV method is not optimal and the optimal procedure

Byrne et al.: Data-adaptive matched-field processing 2494




then involves a prewhitening. This prewhitening requires
knowledge of the actual noise-ondy cross-spectral matrix.
Since such knowledge is usually not available one might pre-
for to use a method that adapts to whatever the notse compo-
nent happens to be, rather than relving on an ¢ priori model
of the noise: the ML method is such a data-adaptive method.

Il. CAPON’S MAXIMUM LIKELIHOOD METHOD

Capon’s maximum likelithood (ML) method is a non-
linear estimator in that the inverse of R is required and that
its resolving capability increases with SNR. For moderate
levels of SNR it has better resolution than CONV. It is con-
venient to use because it does not require prior knowledge of
the ambient noise (it adapts to whatever noise is present)
and can be uscd with any array geometry. When applied to
matched field processing it often presents a less ambiguous
ambiguity surface than CONV. The derivation of ML can be
extended without difficulty from the plane wave case to that
of more complicated propagation in a waveguide and it is
this extended ML that we consider here.

For Rasin Eq. (4) and p(r.z) = Us(r.z). Capon’s ML
method leads to the maximum likelithood estimator

ML(r.z) = I/[p(r.27"R (8)

A detailed discussion of this estimator and its application to
acoustic waveguide array processing is to be found in Ref. 2.
Our treatment here is different in that we are concerned with
the effects of a relatively high level of modal noise. We find it
helpful to analyze the ML estimator in terms of the eigenvec-
tors and eigenvalues of R. The matrix R is Hermitian posi-
tive definite and so has positive eigenvalues
A,2A,» - 24, >0 and associated orthogonal eigenvec-
tors z,.....z, normalized to have norm equal to one. It fol-
lows from the form for R given in Eq. (4) that
Ay . =A, =p and that, forn =M+ 1....N, z,
is orthogonal to the columns of U.'** If we now rewrite the
ML estimator as

‘p(rz)].

A
ML(r.z) = ( Z A, '{z,’,’p(r.Z){Z) , (9)
n i

we see that the terms from n = M + 1 to N are identically
equal to zero for all p(r,z), so they play no role in the ML
estimator and the denominator of ML reduces to a sum over

n = 1....M. When phase errors are present the eigenvectors
of R are altered and the terms corresponding to
n =M + 1,...¥ do not vanish identically, causing the ML

estimator to degrade. [f we eliminate these last ¥V — M terms
we obtain a new estimator, which we call the “*reduced”” ML
(RML).

In plane wave array processing the steering vectors
[analogous to our p(r.2) | have constant norm, so no norma-
lization of ML is required. For normal mode (or more gen-
eraly models ptrz) pir.z) is not constant and tor that rea-
son it is common to calculate a normalized ML. In our case
this would mvolve multiplying (8) by p(r.z)'p(r.z) or,
cquivalentlyv, replacing p(rz) by p(rz)/
Iptropirzy )’ 7 Weteel that thisis not a reasonable pro-

vach

cedure and offer analytic argument an favor of a different
normahzation.
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For the situation considered here the noise is primarily
modal so that, in the absence of a signal, the CSM R would
have the form R = UU " + ¢l, for some small € > 0. In Ap-
pendix C we show that as € goes to 0 the ML ambiguity
surface for this R goes tos(r,z)'s(r.z). We choose therefore
to normalize our ML surfaces by dividing by s(r,z)"'s(r.2),
instead of by p(r.z)p(r.z). This change in normalization is
important when there is a sizeable modal noise component.
Figures 1 and 2 illustrate the ML estimator for R as in (5),
normalized by dividing by p(r.z)"p(r.z) and by
s(r.z)"'s(r.z). respectively.

il. THE “REDUCED" MAXIMUM LIKELIHOOD METHOD
(RML)

The “*reduced’” maximum likelihood estimator (RML)
agrees with Eq. (9) except that the sum is over the first M
terms only:

V!
RML(rz) = ( S AL z,’,’p(r.z)f) (10)
n ]
We shall compare ML with RML in our simulations and
observe the extent to which ML degrades when phase errors
are present. To compute RML it is not necessary to obtain
explicitly the eigenvalues and eigenvectors of R: in fact,
RML can be obtained from the matrix used in the MCONYV.
The passage to *'s space’ that occurs in calculating the
MCONYV involves the transformation of R to
T=(U"U)y '"U"RUU"U) ' and the transformation of
the “‘potential source™ (or “'steering’’) vectors p = p(r.z) to
s=s(rz) = (U"U) 'U"p(rz). Applying the usual
“maximum likelihood™ approach of Capon, we are led to
consider the estimator 1/s”T 's, which as we shall show, is
equivalent to the RML.
To show equivalence of the two estimators we begin
with the eigenvalue—eigenvector decomposition of R

M
R=Y 4,22/ (1)
1

n

CORRL COEFF

FIG. 1. Ambiguity surface produced using ML estimator for Pekens wave-
guide environment. The level of white aotse is 30 dB (e a signal to
white noise ratio of 30dB). Thelevel of modal norse is 20dB (1.e. asignal to
maodal noise ratio of
ptr.2)'ptrzy  lforallrz.
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FIG. 2. Ambiguity surface produced using ML estimator for identical en-
vironmental and noise conditions as in Fig. 1. The steering vectors are nor-
mahized so that s(r,z) “strz) = 1, forall r.z.

Since z,, 1sorthogonal to the columnsof U forn>M + 1. the
z, for n = [....M must be in the linear span of these same
columns,'™ that is, z, = Ua, for some a, (n<M). Hence,

n®n

M
U'RU = ¥ 4,U"2,2'U
n 1

153
= S A, (U"U)a,a(U"U) . (12)
n 1
Then with W = (U"U)""* = W we have
M
W 'U'RUW '= % A, Waalw". (13)
" 1

Since (Wa,)"(Wa,) = a’/W'"Wa, =a'’U'Ua, =z"z, it
follows that {Wa,. » = 1., M} is an orthogonal set, in
which case

(W '"U"RUW ")y '=WU"RU)"'W

It

el

S A haalwi (14
n -1
By eliminating the W from the left and the right one obtains

(U"RU) ' =
Since s =s(r.z) = (UMU) ~'U "p(r,z) we have,
s(r.2)!'T 's(rz) =p(r2)"U(UYRU) U "p(r,2) .

-

M
> A, 'a,all . (15)
!

(16)
Using Eq. (15) in Eq. (16) we have

'
s(r2)"'T 's(rz)= Y 4, 'p(r2)"Va,a)'U"p(r2)
" 1

M
=3 4, Epral. (17
n |

Hence,
RML = [s"(r2)T 's(rz)] ', (18)

and the RML estimator has precisely the same form as the
ML estimator (8). We note that in order to calculate RML
_ we need only invert the single matrix U “RU (16), which is
Mby M.
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From the above calculations we see that RML can be
calculated as

RML(rz) = [p(r2)"U(U"RU) ‘'U"p(rz)] '. (19)

The matrix (U”RU) to be inverted can be ill-conditioned
and it is safer to orthogonalize U first. We can use “QR
factorization™'™" to write U = VX, where Vis an Nby M
matrix with M orthogonal columns of unit length and X'is an
upper triangular matrix; this is essentially Gram-Schmidt
orthogonalization in matrix language. We then have
V"V = [, and replacing U with X in (19) leads to

RML(rz2) = [p(r2)"V(V'RV) "V'p(rz)] "'. (20)

The matrix V'RV will be better conditioned than U""RU
generally, and so more accurately inverted.

We see from Eqgs. (8) and (9) that the ML estimator
will show a peak at the true value p = p,, = Us,, provided that
the denominator is close to zero for p = p,, and larger for
neighboring values. The information about the signal is then
carried by the (near) nulls of the functions |z!'p(r.z}}?, for
n = 2,...,N. When the denominator is perturbed by the addi-
tion of small but nonzero quantities these (near) nulls are
disturbed, with the result being the loss of the peak at the
true signal location. This ts what happens when the terms
corresponding to n = M + 1,....N are no longer identically
zero, due to the presence of phase errors. In our simulations
we compare the performance of the ML and the RML for
varying amounts of phase error. Before we pass to the simu-
lations it will be instructive to examine the behavior of the
ML estimator in one special case, in which U /U =- L.

With U"U=I we have A,=a’+ 0 +p°,
A,= - =4, =0 +p’, where the signal power is
a® = Bs,"'s, We can then write the ML estimator as

tat2

M
ML_—_(/llr—wzf/piz_*_ (0 +p7) ! Z 2p|?
n=2
v -
4o S ) 1)
n=M+1

As the a” gets larger the value of A, ' gets smaller, so the
first term in the denominator gets smaller, making the
(near) nulls of the remaining terms more significant and the
peak of the ML estimator more visible. For smaller values of
a?, however, the first term contributes a sizable nonzero
quantity to the denominator, causing the (near) nulls of the
remaining terms to become less significant and the peak in
the ML estimator to drop; this is the reason for the depend-
ence of resolution on SNR.

Holding a and p fixed, let us consider the effects of rais-
ing 0. As o is changed, the eigenvectors z,, n=1,...M
change, while those forn = M + 1,...,N donot. If &° is small
compared to a’+p?, for n=2..M, the values of
[z)'p(r,2)|* will be nearly zero for (7,z) corresponding to the
true source parameters, but as o increases, these (near) nulls
will weaken and become less distinguished from neighboring
values. In addition, as o increases, 4 , ' = (a’ 4+ 0° 4+ p*) '
becomes more like 4, '=,.,=4,'= (" +p") ", in-
creasing the (unwanted) contribution from the first term in
the denominator of Eq. (21). The overall effect is to make
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the (near) null in the signal direction more shatlow, to raise
the background noise level and o increase sensitivity to the
presence of the third term in the denominator of Eq. (21).

IV. RESULTS

In this section we investigate, by means of computa-
tional simulation within an assumed shallow-water acoustic
environment, the behavior of both ML and RML estimators
as they respond to varving amounts of phase error applied
randomly to the clements of the hydrophone array. The
geoacoustic environmental model used here 15 the two-
lavered liguid hadf-space model of Pekeris. '™ Even though
the simplicity of the Pekeris model limits its general applica-
bility. 1t does possess features that are very similar to at least
one shallow-water environment in which matched-field ex-
periments have been performed.’™ In this case, the water
sound-speed profile was almost isospeed. and a thick sandy
sediment faver was present, which carried no shear waves
and theretore behaved like a iquid. The Pekeris model is also
a widely used and well-understood standard model. It
should describe most of the acoustic characteristies of gen-
eral shallow-water waveguides. Since the acoustic wavefunc-
tions within the waveguide are calculated analytically, with-
for recourse to numerical techniques, the
calculation of the pressure field vectors p, the transforma-
tion matrices L and the modal amplitude vectors s is greatly
facititated. This makes the transformation from R to 7, and
theretore the caleulation of the RML estimator (18), a rela-
tively simple matter.

The Pekeris model consists of a shallow isospeed water
layer of uniform density overlying a faster, isospeed, semi-
mfinite fluid bottom of uniform (and usually higher) den-
sity. For a full description of the general Pekeris model, the
reader is referred to a standard text (e.g.. Ref. 17). In this
work the water depth is 100 m. the sound speed in the water
and sediment is 1500 and 1621.6 m/s. respectively, and the
sediment/water density ratio is 1.772. The acoustic source
has a frequency of 150 Hz, which leads to the establishment
of cight propagating maodes in this waveguide. The source
was placed at a range of 3000 m from the array at a depth of
10 m. A vertical hydrophone wrray consisting of 21 evenly
spaced hydrophones is placed to sumple the central 50 m of
the water column.

The difference in order of the modal and hydrophone

out need

space cross-spectral matrices here does not lead to any un-
due computational problems in transforming from one pro-
cossing space to the other. Since the array spans only S0 of
the water column the matrin C70 = [0 and its cigenvalues
will typically not have the distribution described by (21).
However, many of the broad features of the eigenvalue dis-
tribution will be similar to (21). which may frequently serve
as a hasis for interpreting the phenomena observed when the
noise levels are varied.

White noise is introduced into the system by adding an
appropriate constant {i.e., p” in Eq. (5)1 to every diagonal
element of the cross-spectral matrix in hydrophone space R.
The value of p” is determined by scaling against the mean
power detected on the hydrophones (equivalent to the mean
diagonal clement of R). Modal noise is introduced in a simi-
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lar way, by adding a constant ¢ to the diagonal elements of
the modal space cross-spectral matrix 7. The value of o7 is
determined by scaling the diagonal elements of o UU "
against the mean power detected on the hydrophones. In
these simulations the acoustic source level is held steady so
that the field detected at the hydrophone array due to the
source remains constant. The values of p° and o~ are then
adjusted to achieve the desired levels of white noise and mod-
al noise, respectively. We will quantify the values of p™ and o~
in terms of their dB level above ( + ) or below ( — ) the
signal level. Note that this method of quantifying the noise
levels (which is convenient and helpful here) is the opposite
of that usually adopted. Thus, a modal noise level of — 10
dB would correspond to a signal to modal noise ratio of
+ 10 dB. The same applies to the relationship between the
level of white noise and the signal to white noise ratio.

In order to provide 4 means of quantifying the rough-
ness of the ambiguity surfaces, and a measure of peak resolu-
tion, the peak value (P). mean background level (y). and
standard deviation of the background (v) are calculated for
each surface. The mean background level is calculated by
excluding a small interval around the peak. Two measures of
peak-to-background resolution are used.’”” These are
PBR1 = (P — pu)/uand PBR2 = (P — y1)/v. Wedonot in-
fer statistical behavior from these quantities, but merely use
them as indicators of “"goodness™ of the surfaces.

Phase errors are introduced mto the system in the fol-
lowing manner. First the maximum phase error is specified,
say & derrees. (We refer to this number simply as the “ran-
dom phase error” or RPE.) Then a diagonal matrix D is
formed:

D = diag[exp(id,) ] . (22)

where the &, are independent random variables uniformly
distributed between — @ and + 6. Then the CSM R is re-
placed by R = DRD"".

Before we begin to investigate the stability of the ML
and RML estimators to phase error, we will reconsider brief-
ly the question of estimator normalization first raised in Sec.
I1. The importance of this question may be illustrated very
clearly if we consider a case where white noise is introduced
at a low level compared with the signal (p” = — 30 dB).
while the level of modal noise is considerably higher than the
signal (o° = 20 dB). No phase errors are yet introduced. In
Fig. 1 we see the ambiguity surface obtained by using the
summation expression (9) for the ML estimator with these
inputs. In this example the steering vectors p(r.2) are nor-
malized to have unity norm [ie. p(r.2)"p(rz) = 1, for all
r.z]. Figure 1 indicates that, for the noise level inputs de-
tatled above, this normalization procedure applied to the
ML estimator results in a highly erratic ambiguity surface. A
ridge can be seen close to the input source position (10-m
depth and 4000-m range), but it is masked by numerous
sidelobes. Several of these have greater intensity than the
signal peak. Clearly, reliable and unambiguous estimation is
not possible on this surface.

Rather than normalizing the p(,z) to have unity norm,
we normalize so that their corresponding modal vectors
s(r,z) have unity norm {i.e., s(r,2)s(r,z) =1, for all r,z].
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With this choice of normalization the ML estimator would
give a flat ambiguity surface, in the noise-only case, if the
CSMis R = LU If weagain use the summation expression
(9) to recaleulate the ML ambiguity tunction for the
P - 3 dB. o7 = 20 dB case discussed in the previous
paragraph, we obtain the surface in Fig. 2. It must be stressed
here that Figs. 1 and 2 have been calculated using an identi-
cal algorithm {i.e.. Eq. (9) ] with identical inputs. The only
difference between them 1s the way the steering vectors
ptr.2) have been normalized. In fact, since the vector s(r.2)
used in the calculation of the RML estimator (18) is always
normalized so that s(r.2)s(r.z) = 1 (for all r.z), and since
the summation for the RML estimator (10) is equivalent to
the summation for the ML estimator (9) (when the terms
forn = M + 1....Vare zero). we have the surprising result
that the ML estimator (9) and the RML estimator (10) are
equivalent except for the way the steering vectors p(r,z) are
normalized in the two cases. However. this is nor ¢rue in the
sresence of phase errors, or any other factors, which cause
the terms for n = M + 1. .Vin the ML summation (9) to
besome nonzero, as we shall see later.

If we inspect Fig 2 we see that the ambiguity surface
contans an unambiguous primary peak at the input source
locatien 1 10-m depth and 4000-m range): but it is most nota-
ble for iwo other features. The first 1s the lack of contrast
between praks and vallevs on the surface itselfs and the sec-
ond i~ the hien overall tevel of the surface, which is com-
pressed into the top 107 of the available range of estimator
values. The season for this may be seen by inspection from
Eqgs. (9)yand (21). The eigenvalues 4, appearing in the sum-
mation  on the rhy of Eq. (9) take the values
AUZCC - 7 e T Al A SO P Ay A =P
and since o > + p? all of these eigenvalues are dominated
hy o and those for # = 1.} have similar magnitude.
Now. as described carhier. information about the signal in
ML processing is carried by the (near) nulls of the functions
z'p(rz) " (for n = 2. M) in the denominator of Eq. (9)
(theterms fromn = M+ [ to Vareidentically equal to zero
forall p(r.z).so they play norole in the ML estimator). Now
each of the nonzero terms is multiplied by a factor = 1/0°.
When ¢ is large (as here) this factor tends to make them
small over the whole range of p(r.z) rather than at just the
source position and, because of the similarity of the eigenval-
ues for # = 1....M of comparable magnitude to the source
term 4, ' z!'p(r.z) . This decreases the reciprocal effect of
the nulls at the source location and leads .o the shallow relief
of the details on the surface and its high overall background
level. Although the surface in Fig. 2 is very flat and has a
high background due to the large amount of modal noise, it
does unambiguously imdicate the presence and position of
the source and is much more useful than Fig. 1. The reason
for this 1s that it has been produced using a normalization
procedure for the steering vectors which is optimized for the
presence of modal noise. Since we will be considering cases,
in our later simulations, where modal noise predominates
over white notse, we will use the s(r.z)'s(r.z) normalization
throughout.

We will now proceed to consider the effects of phase
error. We will be concerned here with a case where white
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noise is introduced at a low level compared to the signal
(p” = — 30 dB), while modal noise is considerably higher
but still lower than the signal (o° = — 10dB). In Fig. 3 we
see the ambiguity surface obtained using the ML estimator
(9) for these input noise levels with zero RPE on the hydro-
phones. This surface contains an unambiguous primary peah
at the true source location (10-m depth and 4000-m range).
The peak is extremely well resolved against all the sidelobes
present which are minimal in intensity. As mentioned ear-
lier. the terms for n - M 4+ 1in the summation (9) should be
identically zero for all p(r.z) when no phase errors are pres-
ent, so that in this case ML and RML are equivalent to each
other. Explicit calculation of the RML (17) for the same
input conditions confirms that this is indeed the case. The
RML produces an ambiguity surface identical to t>ut of Fig.
3

The reason for the high peak resolution on the surface in
Fig. 3 may be seen by inspection of Egs. (9) and (21). The
eigenvalues A, appearing in the summation on the rhs of (9)
take the values 2, =" + o + p71 Ay Ay ~0o + poand
Ayp . peendy = o Since @’ 0" »p7 we may further approxi-
matetheseas A, = @ + oA Ay =004, Ay =p°
Passing to Eq. (21) we recall that in ML information about
the signal is carried by the nulls of the functions z'’p(r.z) -
forn = 2.....N. In our case here these functions are identical-
ly zero for .- M + 1 for all p(r.z) so we are really interested
only in the nulls of the terms for n = 2,...,M. In (21) we see
that @™ > ¢ and therefore 4, '< A, ' (n =2...M), mak-
ing the first term in the denominator small and the nulls of
the remaining terms more significant. This leads to the pro-
nounced signal peak observed on the surface.

Let us now consider the effect of introducing phase er-
rors onto the hydrophones. Figure 4 shows the ambiguity
surface produced using ML when the RPE is 30 deg. We see
immediately that a lot of degradation has taken place. Al-
though the signal peak may still be observed at this point, it is
now dominated by the sidelobe structure and may no longer
be unambiguously resolved. The reason for this loss of per-
formance is primarily due to the inclusion of the terms for

CORRL COEFF

FI1G. 3. Ambiguity surface produced using ML estimator for Pekeris wave-
guide environment. The level of white noise is — 30 dB (i.e.. a signal to
white noise ratio of 30 dB). The level of modal noisc is — 10 dB (ie. a
signal to modal noise ratio of 10 dB). The RPE is O deg.
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FIG 4 Ambigaity surface produced using ML estimator for identical en-
vironmental and notse conditions as in Fig. 1. The RPE is 30 deg.

n -M + lin the summation for the ML estimator (9). With
no phase errors these terms are identically zero, as we have
seen. However. the introduction of phase errors into the
CSM R. while leaving the eigenvalues 4, unchanged, gives
rise to arbitrary rotation of the eigenvectors z, in the vector
space of R. The projections of the steering vectors p(r.z)
along the eigenvectors z, (#.-U + 1) then become nonzero.
Although these projections may be relatively small their ef-
fect upon the summation in (9) is amplified by the A, '
factor by which they are multiplied. We remember from
(21) that for n - M + 1. 4, =1/p". Now p is the level of
white noise. which in our case is low ( — 30 dB). Therefore
1/p7 i a large coefficient that can greatly exaggerate the
contribution of the #.- M + 1 terms to the summation, even
when the RPE is comparatively small. Using the same envir-
onmental and noise conditions, we plot tn Fig. 5 the perceu-
tage contribution to the summation in the denominator of
the ML expression (9), when r and z are correct, due to the
n -M <+ 1terms. We see that the contribution rises rapidly as

100 —_— - = .

80+

D
o

CONTRIBUTION (%)
8
1 L

L

N
o
|

T T T T

0 20 40 60 80 100 120
PHASE ERROR (deg)

FIG. S Percentage contribution of # - Y + | terms to summation in the

denominator of expression (9) for the ML estimator. The environmental
and noise conditions are those of the previous examples.
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the phase error increases. It reaches 50% with an RPE of 35
deg and 95% with an RPE of only 80 deg. It asymptotically
approaches 1009% thereafter. With this in mind it is easy to
understand how the sidelobe structure of the surface is en-
hanced by the presence of the extra, nonzero terms in the
ML summation (9), and the stability of the estimator corre-
spondingly decreased.

The RML estimator overcomes this problem of instabil-
ity due to phase error by omitting the terms for n>M + |
from the summation. Some errors will still be present due to
the changes in the projections of the steering vectors p(r,z)
along the eigenvectors z, for n<M, as these are also rotated
in the vector space due to the phase errors. However, this
effect is much smaller and allows the RML estimator to re-
main stable to considerably higher degrees of phase error.
Figure 6 shows the ambiguity surface obtained using the
RML estimator with an RPE of 30 deg (cf. Fig. 4). Unlikc
the ML case, the signal peak is still unambiguously localized
and sharply resolved against the sidelobe background. For
this particular set of environmental and noise conditions, the
RML estimator remains stable up to an RPE of 85 deg, when
the sidelobes finally overcome the signal peak and the esti-
mator fails. This represents a remarkable improvement over
ML. Reference back to Fig. 5 shows that for an RPE of 85
deg the n>M + | terms contribute more than 95% to the
ML summation (9). This is all simply avoided by using the
RML.

Figure 7 displays the variation in PBR1 and PBR2 as a
function of RPE for the ML and RML estimators. The en-
vironmental and noise conditions are unchanged from the
previous examples. If we individually compare the PBR1
and PBR2 curves for the two cases we see that, by both mea-
sures, the RML estimator consistently outperforms the ML
estimator throughout the range of RPE values investigated,
except by a small amount within an interval between 0 and
15 deg. As the RPE is increased the ML estimator deterio-
rates very iapidly. The ML curves terminate at an RPE of 30
deg, beyond which the signal peak cannot be resolved. The
RML curves also indicate a deterioration in performance,
but at a much more moderate rate. As discussed above, the
RML continues to provide accurate and robust localization
estimates up to an RPE of 85 deg.

CORRL COEFF

F1G. 6. Ambiguity surface produced using RML estimator for identical
environmental and noise conditions as in Figs. 1 and 2. The RPE is 30 deg.
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FIG. 7. Vanation of PBR1 and PBRZ as functions of RPE for both ML and

ML esumators. The environmental and noise conditions are those of the
previous examples. The four curves are: (a) RML(PBR2)—shaded dia-
monds: (h) RML(PBR1)-—unshaded diamonds; (¢) ML{PBR2)—
shaded squares; (dy MLPBR1 ) —unshaded squares.

V. CONCLUSIONS

A modification of the data adaptive maximum likeli-
hood (ML) method is presented that shows substantially
improved stability in matched field processing for source
localization. Instabilities in the ML estimator arise from
phase errors in the signals received at the hydrophone array.
These may be caused by a number of physical and environ-
mental factors. We simulate them here by introducing ran-
dom phase errors at the hydrophones. Applying the eigen-
vector/cigenvalue decomposition of the cross-spectral
matrix R, the ML estimator is expanded as the reciprocal of
a sum of terms, one corresponding to each eigenvector. In
theory. most of these terms should be zero when the source
has been correctly located, leading to a peak in the estimator.
Due to perturbations in R caused by the phase errors, how-
ever, terms that should be zero across the entire ambiguity
surface are not, leading to a drop in peak level. By removing
these crroneous terms the estimator may be stabilized. We
term the new estimator that results from this procedure the
“reduced maximum likelihood™ or RML estimator. Dimen-
sionality reduction procedures are used to calculate the
RML, avoiding inversion of the full-sized matrix or the cal-
culation of eigenvalues.

Jsing a Pekeris waveguide model, simulations of acous-
tic propagation from a single source to a 21-hydrophone re-
ceiving array were used to examine the RML and ML esti-
mators. In our particular model the waveguide supports
eight modes and application of the RML estimator reduces
the full problem of dimension 21 to one of dimension 8. Con-
sidering an environment with a large amount of modal noise
(the signal to modal noise ratiois — 20 dB) and little white
noise (the signal to white noise ratio is 30 dB), it is found
that using an ML estimator which is optimized for the pres-
ence of modal noise (by performing an appropriate normali-
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zation of the steering vectors) produces a far superior and
more useful ambiguity surface than using an MI. estimator
which is optimized for the presence of white noise. In the
absence of phase errors the ML and RML estimators are
equivalent apart from the steering vector normalization
schemes they employ.

In the casc of an environment with a significant amount
of modal noise (the signal to modal noise ratiois 10dB) and
little white noise (the signal to white noise ratio is 30 dB) the
two methods are compared as they respond to increasing
degrees of phase error introduced on the hydrophones. The
results obtained clearly demonstrate the superiority of the
RML estimator over the ML estimator. The ML estimator
deteriorates rapidly with phase error, due to the contribu-
tions of large (previously zero) terms in the summation
expression for ML. The ML estimator fails completely when
the random phase error is greater than 30 deg. The RML
estimator avoids this problem by omitting the destabilizing
terms from the summation. The terms remaining in the
RML summation are also affected by the introduction of
phase errors, but to a much lesser extent. The RML estima-
tor continues to perform accurately and reliably up to a ran-
dom phase error of 85 deg.
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APPENDIX A: FORMULATION OF p=U,: LOCAL
NORMAL-MODE MODEL

In Sec. I we discussed the normal-mode model for prop-
agation and showed that the single snapshot (narrow-band)
data vector corresponding to a single source had the form
p = U,, where the N XM matrix U is independent of the
source and depends only on the array and the acoustic envi-
ronment. All source dependencies are in the vector s, whose
entries are given in Eq. (3). However, the typical normal-
mode approach has the deficiency of being valid only for
depth-dependent media, and does not permit inclusion of
range dependencies. In this Appendix we shall show that the
p = U, formulation and preceding results are valid for com-
plicated environments where the ocean channel has sound
speed and density exhibiting both range and depth depend-
encies, as well as a rough surface. Such assumptions in mod-
eling an ocean channel can be included in an extension of the
normal-mode method to obtain solutions in terms of “'local™
normal modes. We shall use well-known methods''*! in de-
riving solutions. First we incorporate density changes into
effective sound speed profiles, and then we obtain solutions
in terms of orthogonal eigenfunctions and coupled modal
amplitudes.

Consider a sound source positioned below the origin of a
cylindrical coordinate system on the z axis at z = z,. Assu -
ing a cylindrically symmetric ocean channel, the surface is at
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Z = d{(r).and the bottom of the ocean sedimentsisat z = D.
The ocean 1s assumed to have range- and depth-dependent
sound speed ¢(r.2) and density p,(r.2). Let the acoustic
pressure be p(r.z.0). Assuming harmonic time dependence
with frequency o radians per second, we have

(A1)

We suppress any time dependence in the surface [choosing
to view d(r) as a member of an ensemble of random fune-
tions remaining fixed in source-receiver travel times| and
hence also in P, which will satisty the differential equation

pirzay = P(rz)e

pVeip, '¥P) +k'P= [ =0(rdtz—2z)]/27r. (A2)
along with the horizontal boundary conditions,

Prd(r)) =0 (A3)
and

aP(r.D):O. (A4)

il
<

Equation (A3) corresponds to a pressure release surface,
while Eq. (A4) is descriptive of a perfectly hard subbottom.
In Eq. (A2), A = e&/c is the local wavenumber. By defin-
: [N R

ing

P(rz) = \;J;Tr:zi)' P'(rz). (AS)
and using Eq. (A2), P’ satisfies

VP + kP =[—=8(r)8(z—2))/2mrp,. (A6)
where

ki =k>+1p\*V(p, Vp,) (AT)

is an effective local wavenumber. Hence, by defining an “ef-
fective™ sound speed, ¢. = w/k,, one may implement den-
sity variations in numerical routines via effective sound
speed profiles and modified source strength.

To derive coupled modes we let'"!

P(rz) = Z b, (Y, (zr), (A8)
n 1

where W (z;r) are solutions to the local normal-mode prob-
lems

¥ . ]
=+ [ki(rz) — k(0] VY, =0, (A9)
o0z
with
¥,(d(ryr)=0 (A10)
and
i(p" ]‘p")‘: I):O' (All)
dz

See Ref. 11 for the equations that uniquely determine the d .
Now, if we use the typical definition for the vector

p=[Prz,).P(rz,),P(rz.),. . .Plrz)]', (A12)

and assume only a finite number (M) of modes propagate,
then p = U_, where Uis an N X M matrix with entries

- . n=12..N,
U, =\p,rz,) V¥, (z,.r), (Al13)
o = o )W, ( m=12...M.
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and where s is a source dependent vector with the M compo-
nents

$=P. (rn, m=12..M. (Al4)

Note that the s, depend on source range and depth. In the
case when there 1s modal and white noise, in addition to a
particular signal of interest, one writes

(A15)

as in Eq. (1). Even though it appears that Eq. (A13) de-
pends on source range (since that is where the origin is posi-
tioned) it is actually not dependent on the distance between
the source and receiver but on the actual location of the
receiver; i.e., for different source locations the U,,, are sull
the same.

x=U +Uy+n,

mn

APPENDIX B: FORMULATION OF p=U,: PARABOLIC
APPROXIMATION MODEL

For actual applications, the system of equations in the
preceding appendix may be quite difficult to solve. The Para-
bolic Approximation method simplifies the modal ampli-
tude equations. If, instead of using Eq. (AS5), one uses the
assumption'* that

P(rz) = \p,(rz) u(rz)H " (kyr), (B1)
where in the farfield
HV (kyr) ~2/imkyr o™, kor>1, (B2)

then, away from the source, u(r,z) satisfies the parabolic
approximation

du ., du

— + 2ik, J

az a

r
where k, = w/c, is a reference wavenumber and ¢, is a refer-
ence sound speed. Now if one writes

+ [ki(rz) —kjlu=0, (B3)

utrz) = 3 T, (0¥, (zn) (B4)
no=1

with ¥, determined asin Egs. (A9)-(All),then ", will be
solutions of

drn l. 2 5 x
- T Kn(r) + kF\ rn = - A,,,,,(r)r" .
dr 2'1(() [ ] IHZ:l

(B5)

where 4, are integral functions of ¥, and W¥,,, given in Ref.
11.

Ifais a vector of length M whose components are modal
amplitudes T',,, and if we approximate the solution by as-
suming M modes propagate, then a satisfies the first-order
problem

a' =Q(ra, (B6)
where (1 is an M X M matrix with entries
LR+ kD) — A, (), m=n,
an = Zk() (B7)

_Amn(r) m#n.

Hence, if exp[ f,€2(7) d7] is the matrix exponential corre-
sponding to the integral of {} then one can write
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a:cxp(] $l(r)dr>c. (B8)
where ¢ 1s a constant vector determined by the initial condi-
tion.

The advantage to this method is that determination of
the matrix exponential in Eq. (BR) 1s perhaps casier than
solving the system of coupled equations in the previous for-
mulation. In this case. the p = U is still vahlid, with

s=akl " (k). (B9)
It is important to again note that Uis only dependent upon
receiver locations and the particular ocean characteristics at
the receiving array. while s contains all source information.

APPENDIX C: ESTABLISHING THE ML ESTIMATE
WHEN R=UU"

To establish the existence of the mit of the denomina-
tor of the maximum likelihood estimator [i.e.,
p(r.2) (UL + €]y ‘p(r.z)] ase—0 we first write

(VUMY + enhU=UU"U + €l (Cl)
from which it folows that
(LU ~ely 'U=UU"U+€e . (C2)

Now we write the denominator of the ML estimator as

p(r.z)(UU" +€l) 'p(rz) and using the relation
p(r.z) = Us(r.z) we have
pr2)(UU" +€l) '‘p(rz)

=s(r2)'UNUU" 3 €l) 'Us(rz), (C3)
and using (C1) we find
p(r2) (LU +el) 'p(rz)

=s(r)'U"UU"U + €l) 's(rz)

=s(r2)(U"U + e)(U"U + €) 's(rz)

—es(rz)(U"U + €l) 's(rz)
=s(rz)'s(rz) - es(r2YU"U + €l) 's(rz).
(C4

Since s(r2)(U"U + el) 's(rz) goes to
2502 v A st S0 Are Yol BY Na 6. june 1990

s(r.2)"CU"U) ‘s(rz) as € goes to zero, it follows that the
entire expression goes to s(r.z)"'s(r,z).
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